[1]
|
Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. 2010. Germination, post-germination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics 41:293−319 doi: 10.1146/annurev-ecolsys-102209-144715
CrossRef Google Scholar
|
[2]
|
Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. 2013. Seeds: physiology of development, germination and dormancy, 3rd edition. New York: Springer New York. xiii, 392 pp. https://doi.org/10.1007/978-1-4614-4693-4
|
[3]
|
Li H, Guo Y, Lan Z, Zhang Z, Ahammed GJ, et al. 2021. Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation. Plant Science 303:110761 doi: 10.1016/j.plantsci.2020.110761
CrossRef Google Scholar
|
[4]
|
Kwangho P. 2005. Variation in sugar and starch content during the germination of rice cultivar suitable for direct sowing. Korean Journal of Crop Science 50:384−86
Google Scholar
|
[5]
|
Pagnussat L, Burbach C, Baluška F, de la Canal L. 2012. An extracellular lipid transfer protein is relocalized intracellularly during seed germination. Journal of Experimental Botany 63:6555−63 doi: 10.1093/jxb/ers311
CrossRef Google Scholar
|
[6]
|
de Sousa Lopes L, Gallão MI, de Magalhãe Bertini CHC. 2013. Mobilisation of reserves during germination of Jatropha seeds. Revista Ciência Agronomica 44:371−78 doi: 10.1590/S1806-66902013000200021
CrossRef Google Scholar
|
[7]
|
Zhao M, Zhang H, Yan H, Qiu L, Baskin CC. 2018. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Frontiers in Plant Science 9:234 doi: 10.3389/fpls.2018.00234
CrossRef Google Scholar
|
[8]
|
Huang P, Li C, Liu H, Zhao Z, Liao W. 2021. Hydrogen gas improves seed germination in cucumber by regulating sugar and starch metabolisms. Horticulturae 7:456 doi: 10.3390/horticulturae7110456
CrossRef Google Scholar
|
[9]
|
Gorim L, Asch F. 2015. Seed coating reduces respiration losses and affects sugar metabolism during germination and early seedling growth in cereals. Functional Plant Biology 42:209−18 doi: 10.1071/FP14142
CrossRef Google Scholar
|
[10]
|
Su JC, Preiss J. 1978. Purification and proper ties of sucrose synthase from maize kernels. Plant Physiology 61:389−93 doi: 10.1104/pp.61.3.389
CrossRef Google Scholar
|
[11]
|
Xiong S, Zhang C, Ma R, Yan X, Wei C, et al . 2023. Identification and expression analysis of invertase gene family in watermelon and melon. Molecular Plant Breeding 21:3829−39 doi: 10.13271/j.mpb.021.003829
CrossRef Google Scholar
|
[12]
|
Luo X, Dai Y, Zheng C, Yang Y, Chen W, et al. 2021. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist 229:950−62 doi: 10.1111/nph.16921
CrossRef Google Scholar
|
[13]
|
Wang Y, Hou Y, Qiu J, Wang H, Wang S, et al. 2020. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytologist 228:1336−53 doi: 10.1111/nph.16774
CrossRef Google Scholar
|
[14]
|
Wang G, Li X, Ye N, Huang M, Feng L, et al. 2021. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist 230:1925−39 doi: 10.1111/nph.17300
CrossRef Google Scholar
|
[15]
|
Wang H, Huang H, Fang Q. 2022. The role of Populus MYB94 transcription factor in seed germination requires the expression of ABA-responsive genes. Journal of Plant Interactions 17:168−72 doi: 10.1080/17429145.2021.2024284
CrossRef Google Scholar
|
[16]
|
Zhang H, Zhang L, Ji Y, Jing Y, Li L, et al. 2022. Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 inhibit WRKY75 function in abscisic acid-mediated leaf senescence and seed germination. Journal of Experimental Botany 73:182−96 doi: 10.1093/jxb/erab391
CrossRef Google Scholar
|
[17]
|
Yu H, Teng Z, Liu B, Lv J, Chen Y, et al. 2024. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature. Plant Physiology 194:1815−33 doi: 10.1093/plphys/kiad650
CrossRef Google Scholar
|
[18]
|
Ahammed GJ, Li Y, Cheng Y, Liu A, Chen S, et al. 2020. Abscisic acid and gibberellins act antagonistically to mediate epigallocatechin-3-gallate-retarded seed germination and early seedling growth in tomato. Journal of Plant Growth Regulation 39:1414−24 doi: 10.1007/s00344-020-10089-1
CrossRef Google Scholar
|
[19]
|
Vanstraelen M, Benková E. 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28:463−87 doi: 10.1146/annurev-cellbio-101011-155741
CrossRef Google Scholar
|
[20]
|
Ali F, Qanmber G, Li F, Wang Z. 2022. Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research 35:199−214 doi: 10.1016/j.jare.2021.03.011
CrossRef Google Scholar
|
[21]
|
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, et al. 2012. Seed germination and vigor. Annual Review of Plant Biology 63:507−33 doi: 10.1146/annurev-arplant-042811-105550
CrossRef Google Scholar
|
[22]
|
Gómez-Cadenas A, Zentella R, Walker-Simmons MK, Ho THD. 2001. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. The Plant Cell 13:667−79 doi: 10.1105/tpc.13.3.667
CrossRef Google Scholar
|
[23]
|
Morris K, Linkies A, Müller K, Oracz K, Wang X, et al. 2011. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: a global issue-specific transcript analysis. Plant Physiology 155:1851−70 doi: 10.1104/pp.110.169706
CrossRef Google Scholar
|
[24]
|
Fu F, Zhang Z, Liu J, Chen M, Pan R, et al. 2020. Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. Journal of Plant Growth Regulation 39:669−79 doi: 10.1007/s00344-019-10009-y
CrossRef Google Scholar
|
[25]
|
Li M, Duan X, Wang Q, Chen W, Qi H. 2019. A new morphological method to identify cold tolerance of melon at seedling stage. Functional Plant Biology 47:80−90 doi: 10.1071/FP19163
CrossRef Google Scholar
|
[26]
|
Liu T, Shi J, Li M, Ye X, Qi H. 2021. Trehalose triggers hydrogen peroxide and nitric oxide to participate in melon seedlings oxidative stress tolerance under cold stress. Environmental and Experimental Botany 184:104379 doi: 10.1016/j.envexpbot.2021.104379
CrossRef Google Scholar
|
[27]
|
Cheng Y, Tian Q, Zhang W. 2016. Glutamate receptors are involved in mitigating effects of amino acids on seed germination of Arabidopsis thaliana under salt stress. Environmental and Experimental Botany 130:68−78 doi: 10.1016/j.envexpbot.2016.05.004
CrossRef Google Scholar
|
[28]
|
Chen L, Lu B, Liu L, Duan W, Jiang D, et al. 2021. Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry 162:506−16 doi: 10.1016/j.plaphy.2021.03.029
CrossRef Google Scholar
|
[29]
|
Borek S, Galor A, Paluch E. 2013. Asparagine enhances starch accumulation in developing and germinating lupin seeds. Journal of Plant Growth Regulation 32:471−82 doi: 10.1007/s00344-012-9313-5
CrossRef Google Scholar
|
[30]
|
Jia HF, Chai YM, Li CL, Lu D, Luo JJ, et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology 157:188−99 doi: 10.1104/pp.111.177311
CrossRef Google Scholar
|
[31]
|
Gao G, Duan X, Jiang H, Yang F, Qi H. 2021. CmMYB113 regulates ethylene-dependent sucrose accumulation in postharvest climacteric melon fruit. Postharvest Biology and Technology 181:111682 doi: 10.1016/j.postharvbio.2021.111682
CrossRef Google Scholar
|
[32]
|
You C, Zhu H, Xu B, Huang W, Wang S, et al. 2016. Effect of removing superior spikelets on grain filling of inferior spikelets in rice. Frontiers in Plant Science 7:1161 doi: 10.3389/fpls.2016.01161
CrossRef Google Scholar
|
[33]
|
Binod P, Sukumaran RK, Shirke SV, Rajput JC, Pandey A. 2007. Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. Journal of Applied Microbiology, 103:1845−52 doi: 10.1111/j.1365-2672.2007.03428.x
CrossRef Google Scholar
|
[34]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22−ΔΔCT method. Methods 25:402−08 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[35]
|
Aragão VPM, Navarro BV, Passamani LZ, Macedo AF, Floh EIS, et al. 2015. Free amino acids, polyamines, soluble sugars and proteins during seed germination and early seedling growth of Cedrela fissilis Vellozo (Meliaceae), an endangered hardwood species from the Atlantic Forest in Brazil. Theoretical and Experimental Plant Physiology 27:157−69 doi: 10.1007/s40626-015-0041-7
CrossRef Google Scholar
|
[36]
|
Eckstein A, Jagiełło-Flasińska D, Lewandowska A, Hermanowicz P, Appenroth KJ, et al. 2016. Mobilization of storage materials during light-induced germination of tomato (Solanum lycopersicum) seeds. Plant Physiology and Biochemistry 105:271−81 doi: 10.1016/j.plaphy.2016.05.008
CrossRef Google Scholar
|
[37]
|
Yang J, Su L, Li D, Luo L, Sun K, et al. 2020. Dynamic transcriptome and metabolome analyses of two types of rice during the seed germination and young seedling growth stages. BMC Genomics 21:603 doi: 10.1186/s12864-020-07024-9
CrossRef Google Scholar
|
[38]
|
Erbaş S, Tonguç M, Şanli A. 2016. Mobilization of seed reserves during germination and early seedling growth of two sunflower cultivars. Journal of Applied Botany and Food Quality 89:28 doi: 10.5073/JABFQ.2016.089.028
CrossRef Google Scholar
|
[39]
|
Zhao H, Jan A, Ohama N, Kidokoro S, Soma F, et al. 2021. Cytosolic HSC70s repress heat stress tolerance and enhance seed germination under salt stress conditions. Plant, Cell & Environment 44:1788−801 doi: 10.1111/pce.14009
CrossRef Google Scholar
|
[40]
|
Oreja FH, Del Fueyo PA, De la Fuente EB. 2022. Environmental factors regulating Cenchrus spinifex seed germination. International Journal of Pest Management : 1−8 doi: 10.1080/09670874.2021.2024620
CrossRef Google Scholar
|
[41]
|
Liu Y, Zhang S, De Boeck HJ, Hou F. 2021. Effects of temperature and salinity on seed germination of three common grass species. Frontiers in Plant Science 12:731433 doi: 10.3389/fpls.2021.731433
CrossRef Google Scholar
|
[42]
|
Ma Q, Yuan Y, Wu E, Wang H, Dang K, et al. 2022. Endogenous bioactive gibberellin/abscisic acids and enzyme activity synergistically promote the phytoremediation of alkaline soil by broomcorn millet (Panicum miliaceum L.). Journal of Environmental Management 305:114362 doi: 10.1016/j.jenvman.2021.114362
CrossRef Google Scholar
|